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NetKAT is a domain-specific programming language and logic that has been successfully used to specify and

verify the behavior of packet-switched networks. This paper develops techniques for automatically learning

NetKAT models of unknown networks using active learning. Prior work has explored active learning for a

wide range of automata (e.g., deterministic, register, Büchi, timed etc.) and also developed applications, such

as validating implementations of network protocols. We present algorithms for learning different types of

NetKAT automata, including symbolic automata proposed in recent work. We prove the soundness of these

algorithms, build a prototype implementation, and evaluate it on a standard benchmark. Our results highlight

the applicability of symbolic NetKAT learning for realistic network configurations and topologies.
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1 Introduction
Model-checking is one of the success stories in formal methods, with broad applications in hardware

and software. However, model checking requires having accurate models of the systems being

verified. These models are usually produced by human experts via a slow and error-prone process.

Active learning is an appealing alternative that can construct an accurate model of a system

automatically. Model learning is often used with closed-box systems—i.e., when the source code or

inner workings of a system cannot be inspected, but its external behaviors can be observed—and it

generates formal models, such as finite automata, that can be used to obtain assurance through

testing or verification. In particular, Angluin’s L★ algorithm, which learns a Deterministic Finite

Automaton (DFA) in the so-called Minimally Adequate Teacher (MAT) framework, has inspired

nearly 40 years of fruitful research [6, 7, 19, 20, 33].

The L★ approach is most applicable when only observations of behavior are available and it is

reasonable to assume the system has a finite state model, or can be approximated by such a model.

Computer networking is one such domain, which has both of these characteristics. We frequently
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have only partial information about the policies used to route packets through the network, but

we do have the ability to observe packet-level behaviors using command-line tools like ping and
traceroute. At the same time, the programs that execute on network routers are finite state—their

behavior is kept intentionally simple to enable them to operate at line rate. Indeed, automata

learning has been applied to learning implementations of network protocols [10, 13].

In this paper, we want to go a step further and learn not just end-host protocols, but network-wide

behaviors. This would be helpful in many scenarios: inferring a model of a single device where

the program and configuration are unavailable, to verify that it conforms to a well-understood

model; inferring the topology of the network and check that it conforms to the expected structure;

or inferring a model an unknown peer network to verify that it is fulfilling a customer agreement.

Indeed, the networking community has recognized that there is great value in having accurate

models of individual devices and the network as a whole. For example, Google employs a small

team of verification engineers who develop and maintain models of their data center switches

in a domain-specific language [1]. They use these models to find bugs (using fuzzers) and verify

properties (using symbolic execution tools). However, maintaining the models turns out to be

non-trivial—switch pipelines are moderately complex, and their behavior changes as vendors add

new features. Using automata learning, rather than having to expend effort developing these models

by hand, they could be generated automatically. Learned models also have the advantage of being

ground-truth in the sense that they are based on actual observations of system behavior.

This paper presents a framework for automated learning of NetKAT automata. To achieve this

goal, we bring together two lines of research: active learning and algebraic approaches to network

verification. We develop new automata learning algorithms for the expressive models used in

NetKAT, a domain-specific programming language and logic based on Kleene Algebra with Tests

[3]. NetKAT allows us to model different aspects of a network at different levels of detail and

abstraction, applicable to all the scenarios described above. Moreover, as NetKATwas designed with

an automata-theoretic foundation, it is a great fit for active learning. The key challenges, however,

are in designing specialized data structures and algorithms that take advantage of NetKAT’s

algebraic structure and other details of the networking domain, to scale up to real-world networks.

In particular, while NetKAT has an elegant theory based on using packets as actions in the

automaton model, for learning network policies, it has an obvious drawback: the space of packets is

exponential in the number of header bits—intractably large for all but toy policies. To overcome the

large packet space challenge, recent work introduced a symbolic form of NetKAT automata [27].

Crucially, these automata are symbolic in both the transition labels and the state space. Hence,

these symbolic NetKAT automata are therefore the ideal target for exploring learning.

Symbolic NetKAT automata are reminiscent of Symbolic Finite Automata (SFAs) [8], a fundamen-

tal model introduced to deal with infinite or intractably large alphabets in automata. The key idea in

SFAs is that rather than transitions being explicitly defined by the singular element of the alphabet

they consume, one can have transitions be labeled by predicates that determine the subset of the

alphabet that can take a specific transition. SFAs have enjoyed a range of useful applications [30],

largely due to their simple theory and efficient decision procedures, and extensions of classic

automata learning algorithms have been proposed for subclasses of symbolic automata [5, 9, 11].

Of particular relevance is recent work on learning a large subclass of SFAs [5].

At first glance, prior work on learning SFAs seems to provide the recipe for dealing with NetKAT

automata: just compile the NetKAT automata down to DFAs, and use SFA techniques to deal with

the large alphabet. Unfortunately, there are several key differences that make this idea a nonstarter:

the semantics of NetKAT automata allow transitions to be based on a notion of a carry-on packet (or

current packet), which means that the naive translation of NetKAT automata to DFAs also triggers
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Syntax Description Semantics J𝑝K ⊆ Pk · (Pk · dup)★ · Pk

𝑝, 𝑞 F ⊥ False ∅
| ⊤ True {𝛼𝛼 | 𝛼 ∈ Pk}
| 𝑓 =𝑣 Test equals {𝛼𝛼 | 𝛼.𝑓 = 𝑣}
| 𝑓 ≠𝑣 Test not equals {𝛼𝛼 | 𝛼.𝑓 ≠ 𝑣}
| 𝑓 � 𝑣 Modification {𝛼𝛼 [𝑓 � 𝑣] | 𝛼 ∈ Pk}
| dup Duplication {𝛼 · (𝛼 · dup) · 𝛼 | 𝛼 ∈ Pk}
| 𝑝 + 𝑞 Union J𝑝K ∪ J𝑞K
| 𝑝 · 𝑞 Sequencing J𝑝K ⋄ J𝑞K
| 𝑝★ Iteration

⋃
𝑛≥0

J𝑝𝑛K s.t. 𝑝0 ≜ ⊤, 𝑝𝑛+1 ≜ 𝑝 · 𝑝𝑛

Fig. 1. NetKAT syntax and semantics.

a blow-up of state. This is precisely the issue addressed in symbolic NetKAT automata [27], and is

the reason why we cannot re-use learning algorithms for SFAs with NetKAT.

This paper develops active learning for NetKAT automata, making the following contributions:

- An expanded theory of NetKAT automata: Angluin-style learning algorithms crucially rely

on the classic Myhill-Nerode theorem, which identifies the states of the minimal automaton

with equivalence classes of languages. We present a new Myhill-Nerode theorem for NetKAT

(Section 3) that enable us to characterize a canonical form for NetKAT automata.

- A naive learning algorithm: We give a “first attempt” solution for learning canonical NetKAT

automata, and prove its correctness (Section 4). It is naive in that it does not use symbolic

techniques, and it therefore has poor performance due to the large “alphabet” and state space.

- Two algorithms for symbolic NetKAT learning: To provide scalable learning for NetKAT,

we also develop an algorithm for learning symbolic NetKAT automata. We do this in two stages.

First, we focus on the subset of NetKAT that does not have the dup primitive (i.e., the dup-free

fragment). We give an algorithm for learning symbolic representations of NetKAT programs

in this restricted setting (Section 5). Next, using this first symbolic learner as a subroutine for

symbolic learning of full-blown NetKAT automata and prove its correctness (Section 6).

- A prototype OCaml implementation: We have implemented our symbolic learning algorithms

as a prototype to investigate their behavior and properties. We conclude our paper, by describing

our implementation (Section 7) and experience learning models for network policies from a

standard benchmark suite (Section 7.1).

Omitted proofs can be found in the extended version of this paper [25].

2 Background on NetKAT and NetKAT Automata
NetKAT [3] was introduced as a language for reasoning about network routing policies with

axiomatic, decidable program equivalence as a design principle. This section briefly reviewsNetKAT

andNetKAT automata as developed in prior work.We fix a set of packet header fields 𝐹 = {𝑓1, . . . , 𝑓𝑛},
and a finite set of header values 𝑉 . We write records (finite maps) as a collection of mappings.

For example, a packet is a finite record assigning values to fields 𝛼 = {𝑓1 ↦→ 𝑣1, . . . , 𝑓𝑛 ↦→ 𝑣𝑛}. We

reference the field 𝑓1 of packet 𝛼 by 𝛼.𝑓1 = 𝑣1. The set of all packets is denoted Pk = 𝐹 Z⇒ 𝑉 .

The syntax and semantics of NetKAT are presented in Figure 1. The basic primitives in NetKAT

are packet tests (𝑓 =𝑣 , 𝑓 ≠𝑣) and modifications (𝑓 �𝑣). Program expressions are then composition-

ally built from tests and packet modifications, using union (+), sequencing (·), and iteration (★).
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Conditionals and loops can be encoded in the standard way:

if 𝑏 then 𝑝 else 𝑞 ≜ 𝑏 · 𝑝 + ¬𝑏 · 𝑞 while 𝑏 do 𝑝 ≜ (𝑏 · 𝑝)★ · ¬𝑏.
In a network, conditionals can be used to model the behavior of the forwarding tables on individual

switches while iteration can be used to model the iterated processing performed by the network as

a whole; the original paper on NetKAT provides further details [3]. Note that assignments and tests

in NetKAT are always against constant values. This is a key restriction that makes equivalence

decidable and aligns the language with the capabilities of network hardware. The dup primitive

makes a copy of the current packet and appends it to the trace, which only ever grows as the packet

goes through the network. This primitive is crucial for expressing network-wide properties, as it

allows the semantics to “observe” intermediate packets at internal switches.

The semantics of NetKAT is based on regular sets of guarded strings which are elements of the

set GS = Pk · (Pk · dup)★ · Pk. Here, dup can be thought of as delimiting “letters” in the string.

Equivalently, we can think of guarded strings as elements of the isomorphic set Pk · Pk★ · Pk which

are strings over the alphabet Pk with at least two letters. Given two guarded strings 𝛼𝑥𝛽 and 𝛾𝑦𝜉

their concatenation, denoted by ⋄, is defined only when 𝛽 = 𝛾 :

𝛼𝑥𝛽 ⋄𝛾𝑦𝜉 =

{
𝛼𝑥𝑦𝜉 𝛽 = 𝛾

undefined 𝛽 ≠ 𝛾
(1)

This definition lifts to sets of guarded strings𝑈 ,𝑉 ⊆ GS pointwise:𝑈 ⋄𝑉 = {𝑢⋄𝑣 | 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 }.
NetKAT’s formal semantics, given in Figure 1 associates sets of guarded strings to each expression.

The semantics for ⊤ gives all traces containing the input/output packet 𝛼𝛼 , whereas ⊥ produces no

traces. Tests (𝑓 =𝑣 and 𝑓 ≠𝑣) produce filter traces, depending on whether the test succeeds or fails.

Modifications (𝑓 �𝑣) produce a trace with the modified packet. Duplication (dup) produces traces

with two copies of the input packet 𝛼 . Union (𝑝 + 𝑞) produces the union of the traces produced

by 𝑝 and 𝑞. Sequential composition (𝑝 · 𝑞) produces the concatenation of the traces produced by 𝑝

and 𝑞, where the last packet in output traces of 𝑝 is used as the input to 𝑞. Finally, iteration (𝑝★)

produces the union of the traces produced by concatenation of 𝑝 , iterated zero or more times.

2.1 Encoding networks in NetKAT

1 2

2 2

1

3

3

1

We encode the behavior of networks inNetKAT using a similar approach

as in prior work [3, 16, 27, 29]. For example, suppose we have a toy

network with two switches with three ports each, connected by a link

between both switches’ port 2:

We use two special fields sw and pt, which denote a packet’s location at a particular switch and

port. Using these fields, we can encode the network topology in NetKAT—e.g., the expression,

t ≜ pt=1 + pt=3 + pt=2 · (sw=1 · sw�2 + sw=2 · sw�1)
Similarly, we can encode routing policies for individual switches in the network above:

𝑟 ≜ pt=1 · pt�2 + pt=2 · pt�1,

which encodes the policy: “At either switch, forward packets arriving on port 1 via port 2, and

forward packets arriving on port 2 via port 1.” This policy drops packets arriving at port 3.

Using these encodings, we can compose the topology (𝑡 ) and routing policy (𝑟 ) into one expression

capturing the network’s transfer function: 𝑟 · 𝑡 . We combine this with ingress and egress predicates

𝑝𝑖 and 𝑝 𝑓 to encode the full end-to-end behavior: 𝑝𝑖 · (𝑟 · 𝑡 · dup)★ · 𝑝 𝑓 . Here we use a dup to denote

that we want to log one copy of each packet for each network “hop” (i.e. an update to sw in 𝑡 ).

The star indicates that we are interested in all paths allowed by this policy on this topology. The
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expressions 𝑝𝑖 and 𝑝 𝑓 are predicates which constrain the initial and final packets we are interested

in. For example, to investigate all paths by which Switch 1 (Port 1) can reach Switch 2 (Port 1), we

might choose 𝑝𝑖 ≜ sw=1 · pt=1, and 𝑝 𝑓 ≜ sw=2 · pt=1. More complicated routing policies may

involve other pertinent fields, perhaps dst, encoding a destination switch.

It is the aim of this paper to begin to answer the question: Can we build a model that completely

describes this network and its policy by sending packets and observing how they are processed?

After building up the component processes, we return to this example in Section 6.8.

2.2 NetKAT Automata
Despite the fact that assignments and tests in NetKAT programs are always against constants, the

behavior of NetKAT programs can be complicated, particularly when conditionals, iteration, and

multiple packet fields are involved. To provide a more operational view of the semantics, NetKAT

automata were introduced by Foster et al. [16] as acceptors of guarded strings.

Definition 2.1. A NetKAT automaton (NKA) is a four-tuple (𝑆, 𝑠0, 𝛿, 𝜀), where 𝑆 is a finite set of

states, 𝑠0 ∈ 𝑆 is the start state, 𝛿 and 𝜀 are the transition and observation functions, respectively
1
:

𝛿 : 𝑆 → Pk→ Pk→ 𝑆 𝜀 : 𝑆 → Pk→ Pk→ 2

We will write 𝜀𝛼𝛽 (𝑠) as a shorthand for 𝜀 (𝑠) (𝛼) (𝛽) and 𝛿𝛼𝛽 (𝑠) as a shorthand for 𝛿 (𝑠) (𝛼) (𝛽).

Semantically, an NKAM = (𝑆, 𝑠0, 𝛿, 𝜀) accepts a language L(M) ⊆ GS containing all strings

𝑠 ∈ GS for whichM(𝑠0,𝑤) = ⊤, where:
M(𝑠, 𝛼 · 𝛽) = 𝜀𝛼𝛽 (𝑠) M(𝑠, 𝛼 · 𝛽 · dup ·𝑤 ′) =M(𝛿𝛼𝛽 (𝑞), 𝛽 ·𝑤 ′) (2)

Note how in the semantics of state 𝑠 of NetKAT automata we read two packets 𝛼𝛽 moving to state

𝛿𝛼𝛽 (𝑠) but we retain 𝛽 in the string that remains! So, unlike traditional regular expressions and

automata, NetKAT is stateful—in effect, the packet 𝛽 has not been fully consumed, but is used

as a carry-on packet to remember the last step of the automaton’s execution. This peculiarity

of NetKAT complicates the semantics (i.e., it is not a straightforward language semantics) and

designing equivalence and minimization procedures, which have to account for the carry-on packet.

We can fold the packet into the state of the automaton and approach the semantics and the problem

of learning using classical automata, but this results in enormous state blowup and is therefore

impractical. This is the key challenge for designing a learning algorithm we address in this paper.

3 Myhill-Nerode Theorem for NetKAT and Canonical Automata
The essential insight of the L★ algorithm is that we can identify Myhill-Nerode equivalence classes

for DFAs in an incremental fashion. However, to use this idea in the context of NetKAT, we need to

develop a NetKAT-specific notion of Myhill-Nerode. This section develops such a notion, which

we will use as a basis for a learning algorithm in Section 4. Our approach follows Kozen’s more

general treatment of Myhill-Nerode for automata on guarded strings [22].

For a language L over an alphabet Σ, the Myhill-Nerode [28] relation for L is an equivalence

relation on Σ★, written (≡L) and defined by:

𝑠 ≡L 𝑡
△⇐⇒ ∀𝑒 ∈ Σ★.(𝑠𝑒 ∈ L ⇐⇒ 𝑡𝑒 ∈ L)

TheMyhill-Nerode theorem states thatL is regular iff≡L has finite index.Moreover, the equivalence

classes of ≡L correspond precisely to the states of the unique minimal DFA for L. We would like

an analogous characterization for NetKAT, but there are two key challenges: concatenation of

guarded strings is not always defined (eq. (1)) and NetKAT’s semantics process strings by reading

1
We use 2 to denote the Booleans, {⊥,⊤}.
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two packets at a time–one of which continues as carry-on packet for the next step (eq. (2)). These

differences result in a subtly different characterization for guarded strings.

We first define the set of guarded string prefixes Pre = Pk · (Pk · dup)★ and the set of guarded

string suffixes Suf = (Pk ·dup)★ ·Pk. We also define a helper function last : Pre→ Pk and a (partial)

concatenation operation ♦ : Pre × GS→ GS for prefixes with guarded strings by:

last(𝛼) = 𝛼

last(𝑤 · 𝛼 · dup) = 𝛼
𝑝 ♦ 𝛼 · 𝑠 =

{
𝑝 · 𝑠 last(𝑝) = 𝛼

undefined otherwise

For a language L ⊆ GS, we define the relation ≡L for 𝑠, 𝑡 ∈ Pre by:

𝑠 ≡L 𝑡
△⇐⇒ (∀𝑒 ∈ GS. 𝑠 ♦ 𝑒 ∈ L ⇐⇒ 𝑡 ♦ 𝑒 ∈ L) (3)

The relation ≡L is an equivalence on guarded string prefixes.

Lemma 3.1. The relation ≡L in Equation (3) is reflexive, symmetric, and transitive.

The equivalence classes of the classic Myhill-Nerode relation for L ⊆ Σ★ correspond exactly

to the states of the minimal DFA accepting L. However, this result does not immediately transfer

to NetKAT. We need to define a simpler form of automata that hides the carry-on packet in the

state—this will enable us to precisely capture the fact that the equivalence classes of ≡L can only

relate prefixes 𝑠 and 𝑡 when last(𝑠) = last(𝑡).2

Definition 3.2. A Packet-state NetKAT automaton (PNKA) is a four-tuple (𝑄,𝑞0, 𝜕, 𝜆), where 𝑄 is a

finite set of states, 𝑞0 : Pk→ 𝑄 is the start state, 𝜕 : 𝑄 → Pk→ 𝑄 is the transition function, and

𝜆 : 𝑄 → Pk→ 2 is the observation function.

The functions 𝜕 and 𝜆 must satisfy the spelling property: for any states 𝑞, 𝑞′ ∈ 𝑄 and packets

𝛼, 𝛽 ∈ Pk, if 𝜕𝛼 (𝑞) = 𝜕𝛽 (𝑞′), 𝑞0 (𝛼) = 𝑞0 (𝛽), or 𝑞0 (𝛼) = 𝜕𝛽 (𝑞), then 𝛼 = 𝛽 .

The spelling property ensures we cannot arrive at the same state via two different packets.

Formally, there is a function spell : 𝑄 → Pk that outputs the packet of all transitions into each state.

A PNKAM = (𝑄,𝑞0, 𝜕, 𝜆) accepts a language L(M) ⊆ GS consisting of all strings 𝛼 ·𝑤 ∈ GS
satisfyingM(𝑞0 (𝛼),𝑤) = ⊤, where:

M(𝑞, 𝛽) = 𝜆𝛽 (𝑞) M(𝑞, 𝛽 · dup ·𝑤 ′) =M(𝜕𝛽 (𝑞),𝑤 ′)
As the name suggests, the distinguishing feature of a PNKA is that the transition function and

observation function operate on a single packet: the other packet is “hidden in the state.” Although

PNKA satisfy additional restrictions compared to standard NetKAT automata, it is important to

note that they recognize exactly the same sets of guarded strings.

Theorem 3.3. Let L ⊆ GS. Then L is accepted by a NKA if and only if it is accepted by a PNKA.

Now that we have established that PNKA are a suitable representation of NKA we are ready to

state the Myhill-Nerode theorem for NetKAT. This theorem ensures PNKA have properties that are

desirable for automata learning.

Definition 3.4. Given a language L we define P≡L = (𝑄,𝑞0, 𝜕, 𝜆) by:
𝑄 = {[𝑠]≡L | 𝑠 ∈ Pre} 𝑞0 (𝛼) = [𝛼]≡L 𝜕𝛼 ( [𝑠]≡L ) = [𝑠 ·𝛼 ·dup]≡L 𝜆𝛼 ( [𝑠]≡L ) = 𝑠 ·𝛼 ∈ L
Theorem 3.5 (Myhill-Nerode for NetKAT). For a given language L ⊆ GS:

(1) L is regular if and only if ≡L has finite index.

(2) For regular L, a minimal PNKA accepting L has | ≡L | states.
(3) Any PNKA accepting L with | ≡L | states is isomorphic to P≡L .

2
Note that we interpret (⇐⇒ ) to hold when both sides are undefined or both defined and equal, but it does not hold when

only one side is undefined (regardless of the other side).
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4 Learning Canonical NetKAT Automata
In this section, we develop a learning algorithm for canonical NetKAT automata (i.e., minimal

PNKA). This algorithm is primarily of theoretical interest, as canonical automata will have a large

number of states in general. However, the core ideas of this approach will guide us in designing a

more practical algorithm in Section 6 for learning symbolic NetKAT automata.

Our algorithm resembles L★, but we cannot use the same state for different “carry-on” packets in

a PNKA. Accommodating this restriction requires some additional structure.

4.1 The PNKA Teacher
Just as in Angluin’s MAT, the MAT framework for NetKAT automata assumes a teacher that can

answer two types of queries: membership queries (i.e., whether a given guarded string is part of

the target language or not) and equivalence queries (i.e., whether a given hypothesis automaton

describes the target language, and returning a counter-example if not).

Definition 4.1 (MAT Interface). The MAT interface for Packet-state NetKAT automata is as follows:

memPNKA : GS→ 2 equiv
PNKA

: PNKA→ 1 + GS

The teacher knows the target language, L ⊆ GS. We have memPNKA (𝑤) = ⊤ iff 𝑤 ∈ L, and
equiv

PNKA
(H) = ⊤ if L(H) = L. Otherwise, equiv

PNKA
(H) =𝑤 ∈ L ⊕ L(H). In the rest of this

section we develop a naive algorithm for learning a canonical PNKA from this type of teacher.

4.2 The Observation Table
The central abstraction used in our learning algorithm is an observation table. This data structure

keeps track of the knowledge the learner has acquired, and it provides the basis for constructing

hypothesis automata. The shape of the table is similar to the classic observation table used in L★,
but we need to adjust it to the specific nature of NetKAT automata. In particular, we organize the

observation table as a collection of smaller tables, one for each packet in Pk.

Definition 4.2 (Packet Table). For a packet 𝛼 ∈ Pk, a packet table is a triple (𝑆𝛼 , 𝐸𝛼 ,𝑇𝛼 ), where:
- 𝑆𝛼 ⊆ {𝑝 | last(𝑝) = 𝛼, 𝑝 ∈ Pre} is a set of access prefixes.
- 𝐸𝛼 ⊆ Suf is a set of distinguishing suffixes.

- 𝑇𝛼 : (𝑆𝛼 ∪ 𝑆 ′𝛼 ) × 𝐸𝛼 → 2 is such that 𝑇𝛼 (𝑠, 𝑒) = ⊤ if 𝑠 · 𝑒 ∈ L, and 𝑇𝛼 (𝑠, 𝑒) = ⊥ otherwise.

We maintain 𝑆 ′𝛼 ≜
⋃

𝛽∈Pk 𝑆𝛽 · (𝛼 · dup) as the set of (𝛼 · dup) extensions of all packet table sets 𝑆𝛽 .

Definition 4.3 (Observation Table). An observation table 𝑇 is an 𝛼-indexed set of Packet Tables,

(𝑆𝛼 , 𝐸𝛼 ,𝑇𝛼 ), consisting of one packet table per packet in Pk.

Remark 1. In L★, the extension part of the table is usually written 𝑆 · Σ, and computes the one letter

extension of each string representing a state—i.e., the transitions of an automaton. We require a similar

functionality in our case, albeit adjusted to the specific details of packet tables. In particular, for a

packet table (𝑆𝛼 , 𝐸𝛼 ,𝑇𝛼 ), the set 𝑆 ′𝛼 is maintained to have the (𝛼 · dup) extension of every state in

every packet table. This allows 𝑇𝛼 to hold information on every 𝛼 transition between any pair of states.

Access Prefixes. Access prefixes describe states of the target automaton—the state corresponding

to a given access prefix is the one the automaton would land on after processing that prefix. Prefixes

comprising a single packet naturally represent the start state, while prefixes comprising two packets

(and one dup) represent the states reached by reading a given packet from the start state, and so on.
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Distinguishing Sequences. Distinguishing sequences, on the other hand, elicit specific behavior

from an arbitrary state. Note that because the prefixes come from Pre and distinguishing sequences

from Suf, concatenation is always defined and forms a guarded string. Distinguishing sequences

can also be understood as the suffixes 𝑒 in the Myhill-Nerode relation of Section 3. In L★, the set of
distinguishing suffixes is maintained to be suffix-closed by the algorithm. A similar property holds

here, but only for the observation table as a whole, not each individual packet table.

Example 4.4. Consider the PNKAM below over the packet space Pk = {{𝑓 ↦→ 1}, {𝑓 ↦→ 2}}, which
we abbreviate to 𝛼 and 𝛽 , respectively. States from equivalence classes ending in 𝛼 are colored

orange and lined, while states from equivalence classes ending in 𝛽 are colored blue and dotted.

The dotted transitions from the start state denote its special type 𝑞0 : Pk→ 𝑄 in the automaton.

𝑞0 𝑞1 𝑞3 𝑞2 𝑞4

{𝛼} ∅{𝛽} ∅

𝛼

𝛽 𝛼

𝛽

𝛼

𝛽

𝛼 𝛽

𝛼𝛽

Note that there are infinitely many possible access prefixes and distinguishing sequences, due to

the cyclic structure of the automaton. Some access prefixes for 𝑞1 are 𝛼 and 𝛼 · 𝛽 · dup ·𝛼 . An access

prefix for 𝑞3 is 𝛼 · 𝛽 · dup. Finally, 𝛽 is a distinguishing sequence for 𝑞1 and 𝑞3, asM(𝑞0 (𝛼), 𝛽) = ⊥
butM(𝑞0 (𝛼), 𝛽 · dup · 𝛽) = ⊤.

Closed and Consistent Observation Tables. In L★, themain loop of the algorithmmakesmembership

queries to construct a closed table, from which a hypothesis can be made. We define an analogous

concept here, also in terms of the row function, just as in L★. Namely, we define a primitive row

function with type row𝛼 : 𝑆𝛼 ∪ 𝑆 ′𝛼 → 𝐸𝛼 → 2, defined by row𝛼 (𝑠) (𝑒) = 𝑇𝛼 (𝑠, 𝑒). Clearly all we

have done here is to curry𝑇𝛼—but the currying is essential! We will partially apply row𝛼 to a given

string 𝑠 and consider the resulting functions 𝐸𝛼 → 2. In this way, we distinguish states by viewing

their behavior in terms of the suffixes we have seen for each packet.

Definition 4.5 (Closed Table). An observation table𝑇 is closed, if for each 𝛼 ∈ Pk and for each 𝑠′ ∈ 𝑆 ′𝛼 ,
then row𝛼 (𝑠′) = row𝛼 (𝑠) for some 𝑠 ∈ 𝑆𝛼 .

Definition 4.6 (Consistent Table). An observation table 𝑇 is consistent, if for each 𝛼, 𝛽 ∈ Pk and for

each 𝑠, 𝑠′ ∈ 𝑆𝛼 , then row𝛼 (𝑠) = row𝛼 (𝑠′) ⇒ row𝛽 (𝑠 · 𝛽 · dup) = row𝛽 (𝑠′ · 𝛽 · dup).

The closedness property can be checked locally to each packet table (provided that all the required

extensions to each prefix by each packet have all already been entered into𝑇 ), while the consistency

property must be checked globally, since successors to rows in one table may be in another table.

We use the observation table in the same way as in L★: by making membership queries until

the table is closed and consistent, ensuring that the construction of the next PNKA to conjecture

is well-defined. In Figure 3, we show how to make the table closed and consistent. The function

extend performs membership queries as needed so that every 𝑇𝛼 is defined for its required domain.

4.3 The PNKA Learning Algorithm
Our NKA learning algorithm works by iteratively expanding an observation table, which is then the

basis fromwhich a hypothesis is constructed. If the hypothesis is correct then the learner terminates.

Otherwise, a counterexample from the equivalence oracle is used to refine the tables. The main

routine of the algorithm (Figure 2) follows the classic learning loop of MAT-based learners.
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𝑇 ← {𝛼 ↦→ (𝑆𝛼 = {𝛼}, 𝐸𝛼 = Pk,𝑇𝛼 = {}) | 𝛼 ∈ Pk}
while ⊤ do

while 𝑇 not closed and consistent do
𝑇 ← mkConsistent(mkClosed(𝑇 ))

H ← hyp
PNKA
(𝑇 )

𝑐 ← equiv
PNKA
(H)

if 𝑐 = ⊤ then
returnH

else
𝑇 ← update(𝑇, 𝑐)

Input: Table 𝑇 , counterex. 𝑐 ∈ GS
Output: 𝑇 updated in place with 𝑐 .

for 𝑠 ∈ Pre, 𝑒 ∈ Suf such that 𝑐 = 𝑠 · 𝑒
do

𝑆last(𝑠 ) ← 𝑆last(𝑠 ) ∪ {𝑠}
return extend(𝑇 )

Fig. 2. Algorithm for learning canonical automata (left) and subroutine for update (right).

if 𝑇𝛼 is not closed then
let 𝑠′ ∈ 𝑆 ′𝛼 such that

row𝛼 (𝑠′) ∉ {row𝛼 (𝑠) | 𝑠 ∈ 𝑆𝛼 }.
𝑆𝛼 ← 𝑆𝛼 ∪ {𝑠′}
return extend(𝑇 )

if 𝑇 is not consistent then
let 𝑒 ∈ 𝐸𝛽 such that for some 𝑠, 𝑠′ ∈ 𝑆𝛼 ,

row𝛼 (𝑠) = row𝛼 (𝑠′),
but 𝑇𝛽 (𝑠 · 𝛽 · dup, 𝑒) ≠ 𝑇𝛽 (𝑠′ · 𝛽 · dup, 𝑒).

𝐸𝛼 ← 𝐸𝛼 ∪ {𝛽 · dup · 𝑒}
return extend(𝑇 )

Fig. 3. Subroutines used in PNKA learning (fig. 2): mkClosed : 𝑇 → 𝑇 (left) and mkConsistent : 𝑇 → 𝑇 (right).

For the update operation, we first break the counterexample string at each possible location.

Each break results in a prefix ending in some packet 𝛼 , which we add to 𝑆𝛼 .

Finally, constructing the hypothesis once the table is closed and consistent is again similar to L★,
except that we still need to keep the state space associated with each table separate. To make this

clear in the formalism, states themselves are a pair of type Pk × (𝐸𝛼 → 2): a packet 𝛼 , and a row

vector of 𝑇𝛼 . Given an observation table 𝑇 , we construct hyp
PNKA
(𝑇 ) ≜ (𝑄,𝑞0, 𝛿, 𝜀), where:

𝑄 =
⋃
{(𝛼, row𝛼 (𝑠)) | 𝑠 ∈ 𝑆𝛼 , 𝛼 ∈ Pk} 𝛿 (𝛼, row𝛼 (𝑠)) (𝛽) = (𝛽, row𝛽 (𝑠 · 𝛽 · dup))

𝑞0 (𝛼) = (𝛼, row𝛼 (𝛼)) 𝜀 (𝛼, row𝛼 (𝑠)) (𝛽) =𝑇𝛼 (𝑠, 𝛽)

Example 4.7. Were we to select the PNKA of Example 4.4 as the target, we would have the following

final packet tables and hypothesis:

𝛼 𝛼 𝛽

𝛼 ⊤ ⊥
𝛼𝛼 ⊥ ⊥
𝛼𝛼 ⊥ ⊥
𝛼𝛼𝛼 ⊥ ⊥
𝛽𝛼 ⊥ ⊥
𝛼𝛽𝛼 ⊤ ⊥

𝑞0 ⊤⊥ ⊥⊤ ⊥⊥ ⊥⊥

{𝛼} ∅{𝛽} ∅

𝛼

𝛽 𝛼

𝛽

𝛼

𝛽

𝛼 𝛽

𝛼𝛽

𝛽 𝛼 𝛽

𝛽 ⊥ ⊥
𝛼𝛽 ⊥ ⊤
𝛼𝛽 ⊥ ⊤
𝛼𝛼𝛽 ⊥ ⊥
𝛽𝛽 ⊥ ⊥
𝛼𝛽𝛽 ⊥ ⊥

4.4 Correctness of the Canonical Learner
Next, we prove that the canonical automaton learner is correct. We start by showing that the learner

produces valid conjectures. For succinctness, we will assume the observation tables used to build

hypotheses are closed and consistent, as this follows from the definition of the learning algorithm.

Lemma 4.8. The hypothesis automaton, hyp
PNKA
(𝑇 ), is well defined for any Observation Table 𝑇 .
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The next lemma says that the learner only conjectures minimal (i.e., canonical) automata.

Lemma 4.9. For any hypothesis PNKA H = (𝑄,𝑞0, 𝜕, 𝜆) produced by the learner, and for any two

prefixes 𝑠, 𝑡 ∈ Pre, we have that 𝑠 ≡H 𝑡 iff 𝑠 ≡L(H) 𝑡 .

The next lemma says that the Myhill-Nerode relation for the target language always refines the

access relation for the learner’s conjecture. In other words, the learner can only be wrong by failing

to distinguish two states that need to be different.

Lemma 4.10. Suppose the teacher holds L. Then for each hypothesis PNKAH of the learner, we have

that (≡L) refines (≡L(H) ) in the sense that for prefixes 𝑠, 𝑡 ∈ Pre, then 𝑠 ≡L 𝑡 implies 𝑠 ≡L(H) 𝑡 .

Additionally, hypotheses remain faithful to the data in the observation table they originate from.

Theorem 4.11. Given a closed, consistent table𝑇 ,H ≜ hyp
PNKA
(𝑇 ) agrees on every cell of the packet

tables. That is, 𝑇𝛾 (𝛼 · 𝑠, 𝑒) =H(𝑞0 (𝛼), 𝑠 · 𝑒) for any 𝛼 · 𝑠 ∈ 𝑆𝛾 ∪ 𝑆 ′𝛾 , 𝑒 ∈ 𝐸𝛾 , and 𝛾 ∈ Pk.

Finally, each counterexample results in a conjectureH , which has at least one more state than

the previous conjecture:

Lemma 4.12. Fix the target language L, and suppose a learner conjectures a PNKAH , and we get a

counterexample 𝑐 = equiv
PNKA
(H), i.e. 𝑐 ∈ L ⊕ L(H). Then the next conjecture by the learner,H ′,

will have at least one additional state compared toH .

Theorem 4.13. The algorithm in Figure 2 terminates with the correct automaton.

Proof. It follows that if the learner terminates then the automaton is correct, as we only terminate

upon a successful equivalence query. Because the Myhill-Nerode relation (≡L) for the language L
refines those of the hypotheses (Lemma 4.10), then once we conjecture a hypothesis 𝐻 for which

| ≡L | = | ≡H |, we know the automaton must be correct by Theorem 3.5. By Lemma 4.12, we make

progress toward this bound with every counterexample, completing the proof. □

5 Learning Symbolic Packet Programs (SPPs)
Before we present our algorithm for learning symbolic NetKAT automata, we first develop the core

techniques needed to handle a restricted case: dup-free NetKAT programs. We then use the learner

we develop in this restricted setting as the central component of a learner that handles full NetKAT.

In addition to its role in the full automaton learner, however, this algorithm can be used directly

whenever input-output packet pairs are enough to capture the relevant behavior of a system, such

as a single closed-box device, or the single-step transfer function of a network.

5.1 Background
Moeller et al. [27] introduced a set of techniques for reasoning about NetKAT symbolically. Their

representation first develops a data structure based on Binary Decision Diagrams (BDDs) for the

dup-free fragment of NetKAT which they call a Symbolic Packet Program (SPP).

𝑝 ∈ SPPF ⊥ | ⊤ | SPP(𝑓 , {. . . , 𝑣𝑖 ↦→ {. . . ,𝑤𝑖 𝑗 ↦→ 𝑞𝑖 𝑗 , . . .}, . . .}, {. . . ,𝑤𝑖 ↦→ 𝑞𝑖 , . . .}, 𝑞)
SPPs have two base cases, ⊤ and ⊥, which represent the corresponding NetKAT expressions. The

third case of an SPP represents testing a field 𝑓 of an input packet against a series of values

𝑣0, . . . , 𝑣𝑖 , . . . , 𝑣𝑛 , with a default case 𝑓 ≠ 𝑣0 · · · 𝑓 ≠ 𝑣𝑛 . However, instead of continuing recursively

after the test, SPPs nondeterministically assign a value 𝑤𝑖 𝑗 to the field 𝑓 of the output packet,

and continue recursively with the corresponding child 𝑞𝑖 𝑗 . This way, SPPs can output more than

one packet for a given input packet, and can also output packets with different values for the

same field. Semantically this third case of an SPP has the semantics of the NetKAT expression:
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𝑖 (𝑓 = 𝑣𝑖 ·

∑
𝑗 (𝑓 �𝑤𝑖 𝑗 · 𝑞𝑖 𝑗 )) + (∏𝑖 𝑓 ≠𝑣𝑖 ) · (

∑
𝑖 𝑓 �𝑤𝑖 + (

∏
𝑖 𝑓 ≠𝑤𝑖 ) · 𝑞), where 𝑓 is a field,

𝑣𝑖 ,𝑤𝑖 𝑗 ,𝑤𝑖 are values, and 𝑞𝑖 𝑗 , 𝑞 𝑗 , 𝑞 are SPPs.

Example 5.1. On the left, we draw the SPP corresponding to the NetKAT expression 𝑓 =1 + 𝑓 �2,

and on the right the one for (𝑓 �0 · 𝑔�0) + (𝑓 =1 · 𝑔=2 · 𝑓 �3 · 𝑔�4):

1

1,2 2

⊤ ⊥

f

1

03

0

2

4

0

0

⊤⊥

ggg

f

In this paper, we write the semantics of SPPs as a function J·K : SPP → Pk × Pk → 2. This is
consistent with the semantics given above as the fragment of Pk · (Pk · dup)★ · Pk that is reachable

without dup is precisely Pk · Pk. We represent SPPs as directed acyclic graphs, similarly to BDDs.

Vertices are labeled with the test field. Solid arrows are labeled with a number encoding the test

value, and dashed arrows represent a default case. The sinks of the graph are labeled with ⊤ or ⊥.
By removing extraneous branches and standardizing between some equivalent forms, SPPs can

be made canonical in the sense that for any subset of Pk · Pk there is a unique normal-form SPP. In

addition, SPPs are closed under all of the NetKAT operations (in Figure 1), as well as difference,

symmetric difference, and intersection.

5.2 The SPP Teacher
We first develop a MAT-based framework (as in Section 4) for learning SPPs. The SPP teacher holds

a set of guarded strings represented by a dup-free NetKAT expression (i.e., guarded strings of length

two, or, pairs of packets). As before, the teacher answers membership and equivalence queries:

memSPP : Pk × Pk→ 2 equiv
SPP

: SPP→ 1 + Pk × Pk
For a membership query, given a pair of packets, the teacher returns ⊤ if the pair is in its language,

and ⊥ otherwise. For an equivalence query, given a SPP ℎ the teacher returns ⊤ if ℎ has the

semantics of the target language, otherwise, the teacher returns a pair of packets in the symmetric

difference between JℎK and the target, i.e., a counterexample to the correctness of ℎ.

If the teacher has an SPP for the target program, the implementation of both queries is straightfor-

ward: for a membership query we check that the given packet pair is in the semantics of the target

(i.e., is a path from root to ⊤), and for the equivalence query, we take the symmetric difference

between the target and the hypothesis. If the resulting SPP is ⊥ we are done; otherwise we choose

a counterexample packet pair by choosing a path to ⊤ in the resulting SPP.

5.3 Evidence Packet Programs
The learner we present below proceeds in a similar fashion to L★ [4] or its variants (e.g., KV [20]).

The learner maintains a data structure with all of the evidence received from the teacher, and it

build successive queries and conjectures guided by this data structure. For learning SPPs, the data

structure is called an Evidence Packet Program (EPP):

𝑒 ∈ EPPF ⊤ | ⊥ | 𝐹 × (𝑉 Z⇒ (𝑉 Z⇒ EPP))
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1 2

13

2

3

2

3

1

2

4

⊤⊥

gg g

f
As with SPPs, we require the fields to appear in a fixed order as we descend

the tree structure of an EPP. Unlike SPPs, we will maintain that every field is

present (i.e. the ⊤ and ⊥ leaves all have the same depth). The other distinction

from SPPs is that every edge label in an EPP has a concrete value; i.e., there

are no default cases. The EPP is essentially a trie containing example packet

pairs, where the values are paired by field, as in SPPs.

An example EPP containing the packet pair ({𝑓 ↦→ 1, 𝑔 ↦→ 2}, {𝑓 ↦→ 3, 𝑔 ↦→
3}), labeled ⊥, and the pairs ({𝑓 ↦→ 1, 𝑔 ↦→ 2}, {𝑓 ↦→ 1, 𝑔 ↦→ 3}) and ({𝑓 ↦→
2, 𝑔 ↦→ 2}, {𝑓 ↦→ 1, 𝑔 ↦→ 4}), labeled ⊤, is shown on the right.

We define the semantics of an EPP as J·K : EPP→ Pk×Pk ⇀ 2, which, given
a packet pair, gives the label of the pair in the EPP.

J⊤K(𝛼, 𝛽) ≜ ⊤ J⊥K(𝛼, 𝛽) ≜ ⊥

J(𝑓 , 𝑒)K(𝛼, 𝛽) ≜
{
J𝑒 [𝛼.𝑓 ] [𝛽.𝑓 ]K(𝛼, 𝛽) if 𝛼.𝑓 ∈ keys(𝑒) ∧ 𝛽.𝑓 ∈ keys(𝑒 [𝛼.𝑓 ])
undefined otherwise

The only pairs that we add to an EPP come from membership queries. Hence, we maintain by

construction the invariant that J𝑒K is always a restriction of the semantics of the target SPP, J𝑠K, in
the sense that whenever J𝑒K(𝛼, 𝛽) = ℓ , it is also the case that J𝑒K(𝛼, 𝛽) = ℓ .

5.4 The SPP Learning Algorithm

𝑒 ← ⊥
𝑐 ← equiv

SPP
(⊥)

while 𝑐 ≠ ⊤ do
𝑒 ← update(𝑒) (𝑐) (memSPP (𝑐))
ℎ ← hyp

SPP
(𝑒)

𝑐 ← equiv
SPP
(ℎ)

return ℎ

Fig. 4. Algorithm for learning SPPs.

The learner executes the following steps in a loop: (i) con-

vert the EPP to an SPP (ii) conjecture an SPP, and (iii)

update the EPP with the counterexample received from

the teacher, or terminate if the conjecture was correct. The

pseudocode for the learner appears in Figure 4. In the rest

of this section, we further detail the learner’s subroutines.

The central function of the learning process the

conversion function from EPPs to a hypothesis SPPs:

hyp
SPP

: EPP → SPP, see Figure 5. It works in bottom-

up fashion, following the structure of the EPP. At each (𝑓𝑖 , 𝑒), it selects one of the bindings of 𝑒
to represent the default case in the SPP. It uses the same value for the default assignment case.

Ideally, the selected binding will correspond to a value that classifies the largest fraction of the

evidence in the EPP—a default case with this property helps keep the conjectured SPP small. The

mechanism for making this choice is to choose the branch that results in the smallest SPP after

canonicalization. In the pseudocode below, the function select(𝑣) builds the SPP that would result

from 𝑣 being chosen as the default case, and hyp
SPP

works by taking the minimum over select(𝑣)
for all keys 𝑣 for each level of the EPP. Note this process does not, in general, result in the smallest

possible SPP consistent with the EPP—it turns out it is NP-hard to find smallest SPPs in general (see

Section 5.5). To quantify the size of an SPP, we use the following function 𝜇 : SPP→ N:

𝜇 (⊤) = 𝜇 (⊥) = 0 𝜇 (𝑆𝑃𝑃 (𝑓 , 𝑏,𝑚,𝑑)) = #keys, recursively, in 𝑏,𝑚,𝑑

That is, this cost function is simply a sum of the keys in the maps at each level of the SPP, which is

a reasonable approximation of the memory footprint of an SPP in a memoized implementation.

When we take the minimum of SPPs in the definition below, it is with respect to 𝜇. Note that spp is

a “smart constructor” that performs canonicalization of the SPPs. We rely on canonicalization to

remove redundant test branches that have the same behavior as the selected default case.
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hyp
SPP
⊥ ≜ ⊥ hyp

SPP
⊤ ≜ ⊤

hyp
SPP
(EPP(𝑓 , 𝑒)) ≜ min

𝑣∈keys(𝑒 )
select(𝑣),where:

select(𝑣) ≜ spp(𝑓 , 𝑏,𝑚,𝑑),where:
𝑏 = {𝑣 ′ ↦→ {𝑣 ′′ ↦→ hyp

SPP
𝑒′ | 𝑣 ′′ ↦→ 𝑒′ ∈ 𝑚′} | 𝑣 ′ ↦→𝑚′ ∈ 𝑒, 𝑣 ′ ≠ 𝑣}

𝑚 = {𝑣 ′ ↦→ hyp
SPP

𝑒′ | 𝑣 ′ ↦→ 𝑒′ ∈ 𝑒 [𝑣], 𝑣 ′ ≠ 𝑣}

𝑑 =

{
hyp

SPP
𝑒 [𝑣] [𝑣] if 𝑣 ∈ keys(𝑒) and 𝑣 ∈ keys(𝑒 [𝑣])

⊥ otherwise

Fig. 5. Definition of hyp
SPP

, for generalizing EPPs to SPPs.

The update : EPP→ Pk × Pk→ 2→ EPP operation used in in Figure 4 just adds an example

pair to the trie. We assume an implementation that, whenever 𝑒′ = update 𝑒 (𝛼, 𝛽) ℓ , then the label

for (𝛼, 𝛽) is updated in 𝑒′ and no other pairs are affected:

J𝑒′K(𝛼, 𝛽) = ℓ ∧ ∀(𝛼 ′, 𝛽 ′) ≠ (𝛼, 𝛽) : J𝑒K(𝛼 ′, 𝛽 ′) = ℓ ′ ⇒ J𝑒′K(𝛼 ′, 𝛽 ′) = ℓ ′ .

Example 5.2. Consider applying the algorithm in Figure 4 to the NetKAT expression 𝑓 = 1. The

SPPs wrapped in blue boxes below indicate the conjectures ℎ made in each iteration, while the EPPs

drawn to the left of the SPPs indicate the set of evidence 𝑒 according to which the conjectures are

made. The labels on the arrows indicate the counterexamples given by the teacher in each iteration.

The initial state of the algorithm before the while loop (when 𝑒 = ⊥) is omitted for brevity.

1

1

⊤

f

⊤

f

0 1

0 1

⊥ ⊤

f

0

⊤

f

0 12

0 12

⊥ ⊤

f

1

1

⊤ ⊥

f

({ 𝑓 ↦→ 0}, { 𝑓 ↦→ 0}),⊥ ({ 𝑓 ↦→ 2}, { 𝑓 ↦→ 2}),⊥

The SPP learner in Figure 4 eventually learns the correct SPP held by the teacher. The following

lemma shows that SPPs constructed from EPPs are consistent with all the packet pairs in the EPP:

Lemma 5.3. Let 𝑒 be an EPP, with the number of fields |𝐹 | ≥ 1. For any 𝑣 ∈ 𝑉 , and let 𝑠 =

SPP(𝑓 , 𝑏,𝑚,𝑑) = select 𝑣 for 𝑒 . Then for all (𝛼, 𝛽) such that J𝑒K(𝛼, 𝛽) = ⊤, we have J𝑠K(𝛼, 𝛽) = ⊤,
and for all (𝛼, 𝛽) such that J𝑒K(𝛼, 𝛽) = ⊥, we have J𝑠K(𝛼, 𝛽) = ⊥.

In addition, the learning algorithm terminates ensuring soundness.

Theorem 5.4. The algorithm in Figure 4 terminates with a correct SPP.

5.5 Finding small SPPs is NP-hard
Typically when developing learning algorithms, a learner usually tries to make conjectures as small

as possible, as smaller conjectures usually generalize better and therefore result in more informative

counterexamples. However, our hyp
SPP

does not produce SPPs which are minimal in general. It

turns out that finding small SPP consistent with a given EPP is NP-hard:

Definition 5.5. The Small Consistent SPP Problem, SmallSPP, is to determine, given an EPP 𝑒 and

𝑘 ≥ 0, whether there exists an SPP 𝑠 consistent with 𝑒 such that 𝜇 (𝑠) ≤ 𝑘 .
Theorem 5.6. SmallSPP is NP-hard.
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Proof sketch. By reduction from IndependentSet, which is to determine given an undirected

graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ≥ 0, whether there is a set 𝑉 ′ ⊆ 𝑉 such that |𝑉 ′ | ≥ 𝑘 and for all 𝑣1, 𝑣2 ∈ 𝑉 ′,
(𝑣1, 𝑣2) ∉ 𝐸. Given a graph (𝑉 , 𝐸), we build an EPP with fields 𝑓1, 𝑓2 and values 𝑉 ∪𝑉 ×𝑉 ∪ {1, 2}
as follows. First define two small EPPs:

𝑒⊤ = EPP(𝑓2, {1 ↦→ {2 ↦→ ⊤}, 2 ↦→ {1 ↦→ ⊥}}) 𝑒⊥ = EPP(𝑓2, {1 ↦→ {2 ↦→ ⊥}, 2 ↦→ {1 ↦→ ⊤}}),

Then we define our EPP by:

to_epp(𝐺) = EPP(𝑓1, {𝑣1 ↦→ {{𝑣1, 𝑣2} ↦→ h(𝑣1, 𝑣2) | 𝑣2 ∈ 𝑉 , 𝑣1 ≠ 𝑣2} | 𝑣1 ∈ 𝑉 })

where ℎ(𝑣1, 𝑣2) satisfies that, for any 𝑣1, 𝑣2 ∈ 𝑉 : ℎ(𝑣1, 𝑣2) = ℎ(𝑣2, 𝑣1) = 𝑒⊤ if {𝑣1, 𝑣2} ∉ 𝐸, and

ℎ(𝑣1, 𝑣2) = 𝑒⊤ and ℎ(𝑣2, 𝑣1) = 𝑒⊥ otherwise. It can be shown that every SPP consistent with this EPP

corresponds to an independent set of 𝐺 (the independent set is the vertices not chosen for the test

branches of the SPP). As a result, the smallest SPP corresponds to the largest independent set. □

6 Learning Symbolic NetKAT Automata
The learner in Section 4 is appealing for its simplicity, but it has a critical limitation that restricts its

applicability in practice. If we require states to be separated by packet, then PNKAs are necessarily

much larger than necessary. In addition, the learning algorithm itself must repeatedly iterate

through the entire space of packets to update the observation table. To improve on this state of

affairs, we now present an algorithm, NKL★, for learning symbolic NetKAT automata, which uses

the SPP learner of Section 5 as a subroutine. The advantage to symbolic automata is that they are

more compact, as they capture behaviors across sets of packets concisely.

6.1 Background
SPPs encode transformations on packets in a symbolic manner. Hence, we can construct automata

that use SPPs to represent the transition and observation functions for each state.

Definition 6.1. A symbolic NetKAT automaton (SNKA) is a four-tuple (𝑆, 𝑠0, 𝛿, 𝜀) where 𝑆 is a finite

set of states, 𝑠0 ∈ 𝑆 is the start state, 𝛿 and 𝜀 are transition and observation functions, respectively:

𝛿 : 𝑆 → 𝑆 → SPP 𝜀 : 𝑆 → SPP

There is one additional restriction to ensure that automata are deterministic: for all states 𝑠, 𝑠1, 𝑠2 ∈ 𝑆
such that 𝑠1 ≠ 𝑠2, we must have 𝛿 (𝑠)(𝑠1) ∩̂𝛿 (𝑠) (𝑠2) = ⊥, where ∩̂ is intersection on SPPs.

Semantically, an SNKAM = (𝑆, 𝑠0, 𝛿, 𝜀) accepts a language L(M) ⊆ GS containing all strings

𝑤 ∈ GS for whichM(𝑠0,𝑤) = ⊤, where:

M(𝑠, 𝛼 · 𝛽) ≜ J𝜀 (𝑠)K(𝛼, 𝛽)

M(𝑠, 𝛼 · 𝛽 · dup ·𝑤 ′) ≜
{
M(𝑠′, 𝛽 ·𝑤 ′) ∃𝑠′ ∈ 𝑆 such that J𝛿 (𝑠) (𝑠′)K(𝛼, 𝛽) = ⊤
⊥ otherwise

6.2 The SNKA Teacher
For the SNKA learning problem, we assume essentially the same teacher as in Section 4, except

that the teacher supports equivalence queries for symbolic automata instead of PNKA.

Definition 6.2 (MAT Interface). The MAT interface for Symbolic NetKAT automata (SNKA) is

implemented as a membership and an equivalence oracle:

memSNKA : GS→ 2 equiv
SNKA

: SNKA→ 1 + GS
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Remark 2. The concept of using isolated MAT-style learning subroutines for complex transition labels

was first explored by Argyros and D’Antoni [5] in the context of SFAs. However, using SFA learning for

NetKAT automata would only handle the transitions in a symbolic way—i.e., the state space would

blow up, as with PNKA learning. Hence, to obtain an efficient algorithm for SNKA learning requires

additional insights and data structures, as we show below.

Our general strategy for the learning algorithm is to follow the canonical learning algorithm of

Figure 2, but eliminating all of the steps where we have to iterate over the entire packet space. To

review, here are the steps where the canonical learner (Figure 2) iterates over the packet space:

• We initialize a table 𝑇𝛼 for every packet 𝛼 .

• We initialize every 𝐸𝛼 to include every individual packet in Pk.

• In two places we apply extend(𝑇 ): Since we may think of 𝑇𝛼 as already having |Pk| rows
and columns (i.e., of size |𝑆𝛼 ∪ 𝑆𝛼 · (Pk · dup) | and |𝐸𝛼 |, respectively), then extend requires at

least |Pk| membership queries because we have just added a row or column.

Instead, we will adopt a kind of lazy approach—e.g., rather than eagerly asking |Pk| many member-

ship queries, we will make incremental guesses and wait to be corrected by a counterexample. In

particular, even if we remove all three of these steps, our conjectures will still apply to the entire

packet space due to use of the EPP to SPP conversion (Section 5). Put another way, we build an

automaton with the specific evidence traces that we have seen, and then generalize the automaton

from there to be well-defined on all input traces. Before specifying our learning algorithm in

pseudocode, we first describe the modifications we make to the core data structures.

6.3 Partial Observation Table
We allow the observation table to be partial—i.e., entire packet tables as well as individual entries

in packet tables may be missing. Hence, at a given point in the learning process, we will only have

a packet tables for the packets we have encountered in some example. In addition, the packet table

function𝑇𝛼 does not have information on the extended portion (𝑆 ′𝛼 ), nor is 𝐸𝛼 initialized with all of

Pk. Putting these ideas together, the type of a partial packet table is as follows:

Definition 6.3 (Partial Packet Table). For a packet 𝛼 ∈ Pk, a packet table is a tuple (𝑆𝛼 , 𝐸𝛼 ,𝑇𝛼 ), where:
- 𝑆𝛼 ⊆ {𝑝 | last(𝑝) = 𝛼, 𝑝 ∈ Pre} is a set of access prefixes.
- 𝐸𝛼 ⊆ Suf is a set of distinguishing suffixes.

- 𝑇𝛼 : 𝑆𝛼 × 𝐸𝛼 → 2 is defined such that 𝑇𝛼 (𝑠, 𝑒) = ⊤ if 𝑠 · 𝑒 ∈ L, and 𝑇𝛼 (𝑠, 𝑒) = ⊥ otherwise.

Definition 6.4 (Partial Observation Table). An observation table 𝑃 is a set of Partial Packet Tables,

(𝑆𝛼 , 𝐸𝛼 ,𝑇𝛼 ). There may or may not be a Partial Packet Table in 𝑃 for each particular 𝛼 ∈ Pk.

Closedness and Consistency. Along with these changes to the table structure, we will omit the

closedness check in our algorithm. The reason we can avoid this check is that, since we will not

be making membership queries for an extension of every prefix by one packet, we will also not

have any corresponding “lower” rows of our packet-tables. We will only add transitions for which

we have received evidence. Note that missing transitions are perfectly acceptable in a symbolic

automaton—the result is simply to drop certain traces.

We will still check a form of consistency as this is needed to ensure that the hypothesis automaton

is deterministic (i.e., consistency will ensure we only allow a transition to one state for a packet

pair). The modification to consistency is simple: whenever we have equal rows in a partial packet

table (𝑆𝛼 , 𝐸𝛼 ,𝑇𝛼 ), we only require that their successors on, say 𝛽 , are equal if both rows exist in

(𝑆𝛽 , 𝐸𝛽 ,𝑇𝛽 ) (the box highlights the difference from Definition 4.6).

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 192. Publication date: June 2025.



192:16 Mark Moeller, Tiago Ferreira, Thomas Lu, Nate Foster, and Alexandra Silva

while 𝑃 not consistent do
let 𝑒 ∈ 𝐸𝛽 s.t. row𝛼 (𝑠) = row𝛼 (𝑠′),
but 𝑇𝛽 (𝑠 · 𝛽 · dup, 𝑒) ≠ 𝑇𝛽 (𝑠′ · 𝛽 · dup, 𝑒).

𝐸𝛼 ← 𝐸𝛼 ∪ {𝛽 · dup · 𝑒}
return extend(𝑃)

(a) Algorithm for mkConsistent : 𝑇 → 𝑇 .

𝑆 ← {𝑠0}
𝛿 (𝑠0) (𝑠0) ← ⊥
𝜀 (𝑠0) ← ⊥
returnM∅ ← (𝑆, 𝑠0, 𝛿, 𝜀)

(b)M∅ is the SNKA of the empty language.

H ←M∅; 𝑃 ← {}
while 𝑐 ← equiv

SNKA
(H) ∈ GS do

𝑃 ← update(𝑃, 𝑐)
𝑃 ← mkConsistent(𝑃)
H ← hyp

SNKA
(𝑃)

returnH
(c) Algorithm for learning symbolic automata,

NKL★.

Input: Partial Observation table 𝑃 , counterex-

ample string 𝑐 ∈ GS
for 𝑠 ∈ Pre, 𝑒 ∈ Suf s.t. 𝑐 = 𝑠 · 𝑒 do

𝑆last(𝑠 ) ← 𝑆last(𝑠 ) ∪ {𝑠}
𝐸last(𝑠 ) ← 𝐸last(𝑠 ) ∪ {𝑒}

return extend(𝑃)
(d) Subroutine update.

Fig. 6. SNKA learning algorithm and subroutines.

Definition 6.5 (Consistent Partial Observation Table). A partial observation table 𝑃 is consistent, if

for each 𝛼, 𝛽 ∈ Pk and for each 𝑠, 𝑠′ ∈ 𝑆𝛼 , then if both 𝑠 · 𝛽 · dup, 𝑠′ · 𝛽 · dup ∈ 𝑆𝛽 , and we have

row𝛼 (𝑠) = row𝛼 (𝑠′), then we must have row𝛽 (𝑠 · 𝛽 · dup) = row𝛽 (𝑠′ · 𝛽 · dup).

6.4 The SNKA Learning Algorithm
The rest of the SNKA learning algorithm is similar to the one given in Figure 2. The update function

we defined before (Figure 2) almost still works except that we add both prefixes and suffixes of each

counterexample to 𝑃 . The updated pseudocode is shown in Figure 6.

Due to our dramatic simplification of the outer algorithm, however, the construction of our

hypothesis automaton, hyp
SNKA

, is more complicated explained in the next section.

6.5 Constructing Symbolic Hypotheses
Given an observation table 𝑃 that classifies the information observed so far, we now show how to

construct an SNKA as a hypothesis. To separate concerns and tame the complexity somewhat, we

construct our automaton in two phases. We first use the observation table to build a data structure

we call an evidence automaton (EA) and then we convert the EA to an SNKA.

6.5.1 Constructing the Evidence Automaton. An EA is like an SNKA but uses EPPs instead of SPPs.

Definition 6.6 (Evidence Automaton). A NetKAT evidence automaton (𝐸𝐴) is a four-tuple (𝑄,𝑞0, 𝛿, 𝜀),
with 𝑄 a finite set of states, 𝑞0 ∈ 𝑆 the initial state, 𝛿 : 𝑄 → 𝑄 → EPP the transition function and

𝜀 : 𝑄 → EPP the observation function.

Nowwe show how to construct an evidence automaton E = (𝑄,𝑞0, 𝛿, 𝜀) from a partial observation

table 𝑃 . The first challenge is to create the set of states for the evidence automaton. Here, we are

guided by the semantics of the canonical automaton but wish to have as few states as possible.

Packet-specific states. For each packet table (𝑆𝛼 , 𝐸𝛼 ,𝑇𝛼 ) ∈ 𝑃 , we start with a set of states by

inspecting the packet table 𝑇𝛼 the same way that they are identified in Section 4.

So for each 𝛼 , we define the packet-specific states for each 𝛼 we have 𝑄𝛼 ≜ {row𝛼 (𝑠) | 𝑠 ∈ 𝑆𝛼 }.
This means that for each individual elements 𝑞, 𝑞′ ∈ 𝑄𝛼 we have prefixes 𝑠, 𝑠′ ∈ 𝑆 such that

𝑞 = row𝛼 (𝑠) and 𝑞′ = row𝛼 (𝑠′). Moreover, if 𝑞 ≠ 𝑞′, this means that there is a suffix 𝑒 ∈ 𝐸𝛼 for

which row𝛼 (𝑠) (𝑒) ≠ row𝛼 (𝑠′) (𝑒), or, equivalently, 𝑇𝛼 (𝑠, 𝑒) ≠ 𝑇𝛼 (𝑠′, 𝑒).
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Thus𝑄𝛼 are just the set of distinct rows of the packet table (𝑆𝛼 , 𝐸𝛼 ,𝑇𝛼 ) that can be distinguished

by suffixes from 𝐸𝛼 . Next, we merge these states to produce the set of states of the symbolic NKA.

Merged NKA states. Now that we have𝑄𝛼 for each 𝛼 , we build a set𝑄 , along with a map for each

𝑄𝛼 into 𝑄 , which we denote 𝜂 : 𝑄𝛼 → 𝑄 . There are only two restrictions that guide how we can

combine packet-specific states into global states:

(1) There is a special 𝑞0 ∈ 𝑄 such that for all 𝑄𝛼 , we have 𝜂 (row𝛼 𝛼) = 𝑞0.

(2) For each 𝑞, 𝑞′ ∈ 𝑄𝛼 then 𝑞 ≠ 𝑞′ implies 𝜂 (𝑞) ≠ 𝜂 (𝑞′).
The first restriction says that we must map every start state into the same global state. The

second restriction says that we cannot combine states from the same 𝑄𝛼 , after all these are already

distinguished by a suffix in 𝐸𝛼 , and this suffix prevents their combination in the symbolic automaton.

Every combination of packet states into global states that respects these two restrictions is valid.

The reason, briefly, is that we may simply guard every behavior by a complete test for each different

packet in the worst case (the final SPP might not do this, because it might not be needed). Indeed,

different implementations may make different merges here. Different choices for 𝜂 will result in

different sizes for the SPPs in the final automaton (state-minimal SNKAs are not unique).

Although it would be interesting to explore heuristics that result in smaller final SPPs, we defer

that question to future work and instead merely insist that the result be minimal with respect to

the number of states. To achieve this, we choose 𝑄 to have a size matching the largest |𝑄𝛼 | (clearly
any smaller 𝑄 will violate restriction 2, above). Otherwise we assume an arbitrary choice for 𝜂.

Adding EA Transitions. Having created the set of states, 𝑄 , we need to build an EPP to label the

transitions between each pair of states to build 𝛿 . To do this, we start by initializing an empty EPP

for each pair of states. Next we iterate over the entire observation table adding a positive example

pair to some EPP for each row in each packet table. That is, for each trace 𝑠 · 𝛼 · dup · 𝛽 ∈ 𝑆𝛽 , we
add a pair (𝛼, 𝛽) with label ⊤ to the EPP 𝛿 (𝜂 (row𝛼 (𝑠 · 𝛼))) (𝜂 (row𝛽 (𝑠 · 𝛼 · dup · 𝛽))).

Determinizing pairs. We would like to perform EPP to SPP conversion on each transition and

observation function, but there is a fly in the ointment. Because we will convert each transition to

SPP independently, two SPPs leaving the same state might generalize to “overlap” such that the

resulting automaton is nondeterministic. For example, suppose we have two EPPs labeling two

transitions leaving the same state, 𝑠 , as shown in Figure 7a. If we perform SPP conversion to the EA

on the left, we get the symbolic NKA on the right—which is not deterministic! Leaving state 𝑠 on the

packet pair ({𝑓 ↦→ 1}, {𝑓 ↦→ 1}) we can go to either 𝑠′ or 𝑠′′ because J⊤K({𝑓 ↦→ 1}, {𝑓 ↦→ 1}) = ⊤.
To prevent this problem, we add negative examples to the EA: for each positive example pair (𝛼, 𝛽)
such that J𝛿 (𝑠) (𝑠′)K(𝛼, 𝛽) = ⊤, we add a negative pair, (𝛼, 𝛽,⊥) to each EPP 𝛿 (𝑠) (𝑠′′) where 𝑠′ ≠ 𝑠′′.
This process requires that we do not have two of the same positive example pairs leading to different

states out of the same state, but this is ensured by the consistency check.

Adding EA Observations. Defining the observation function for an SNKA is analogous to deter-

mining whether a state in a standard DFA is accepting or not. Recall that in the canonical learner, we

are guaranteed to have Pk ⊆ 𝐸𝛼 which allows us to define the observation function on every final

packet for each row. We perform the analogous step here. More precisely, for each 𝑞 = row𝛼 (𝑠):

J𝜀 (𝜂 (𝑞))K(𝛼, 𝛽) = ℓ ⇐⇒ 𝑇𝛼 (𝑠, 𝛽) exists and 𝑇𝛼 (𝑠, 𝛽) = ℓ .

To summarize the EA construction: for a partial observation table 𝑃 , we have ev(𝑃) ≜ (𝑄,𝑞0, 𝛿, 𝜀)
constructed by the following pseudocode:

Choose 𝑄 with special 𝑞0 ∈ 𝑄 such that |𝑄 | =max𝛼 |𝑄𝛼 |.
Choose 𝜂 subject to restrictions (1) and (2) in Section 6.5.1.
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Fig. 7. Converting EPP transition labels to SPP transition labels.

for𝑤 ∈ 𝑆𝛼 s.t.𝑤 · 𝛽 · dup ∈ 𝑆𝛽 do
Update 𝛿 (𝜂 (row𝛼 𝑤)) (𝜂 (row𝛽 (𝑤 · 𝛽 · dup))) with (𝛼, 𝛽),⊤.

for𝑤 ∈ 𝑆𝛼 , 𝛽 ∈ 𝐸𝛼 do
Update 𝜀 (𝜂 (row𝛼 (𝑤))) with (𝛼, 𝛽),𝑇𝛼 (𝑤, 𝛽).

6.6 Converting the Evidence Automaton to Symbolic NetKAT Automaton
Having constructed an EA from the Observation Table, we are close to having an SNKA to conjecture.

Conceptually, we would like to simply map our hyp
SPP

function from Section 5 over the transition

and observation EPPs in the EA, producing an SNKA. There is one final determinization problem

with doing this, which we show by way of an example.

Example 6.7. Suppose we have added the negative example pairs to the EPPs, shown in Figure 7b.

Unfortunately, when we do the SPP conversion, we may still get the automaton on the right, which

is still not deterministic! The SPPs for 𝑓 ≠1 and 𝑓 ≠2 overlap on, e.g., ({𝑓 ↦→ 3}, {𝑓 ↦→ 3}).

This overlap illustrated by Example 6.7 can be resolved by taking differences arbitrarily (as SPP

operations). The reason is that any pairs remaining in the intersection of the semantics of two

same-origin SPPs must both not be from example pairs in the EPPs (because otherwise the overlap

would have been prevented by negative pairs, above). We can therefore compute final transition

SPPs by subtracting out the other SPPs leaving the same state.

Thus, given an EA E = (𝑄,𝑞0, 𝛿, 𝜀) we define sym(E) ≜ (𝑄,𝑞0, 𝛿 ′, 𝜀′), where 3
:

𝛿 ′ (𝑞) (𝑞′) ≜ hyp
SPP
(𝑞) (𝑞′) −̂

∑̂︁
𝑞′′≠𝑞′

hyp
SPP
(𝑞) (𝑞′′) 𝜀′ (𝑞) ≜ hyp

SPP
(𝜀 (𝑞))

6.7 Correctness of the SNKA Learner
We conclude by showing that our symbolic SNKA learner is correct. The first lemma says that each

conjecture is a well-defined SNKA.

Lemma 6.8. For any partial observation table 𝑃 , we have that hyp
SNKA
(𝑃) is a well-defined SNKA.

Lemma 6.9. Let E = (𝑄,𝑞0, 𝛿, 𝜀) be an EA for a consistent partial observation table 𝑃 (i.e. E = ev(𝑃)),
and letM = (𝑄,𝑞0, 𝛿 ′, 𝜀) = sym(E). For any 𝑞, 𝑞′ ∈ 𝑄 and any pair (𝛼, 𝛽) ∈ Pk × Pk, then:
(a) If J𝛿 (𝑞) (𝑞′)K(𝛼, 𝛽) = ⊤, then J𝛿 ′ (𝑞) (𝑞′)K(𝛼, 𝛽) = ⊤.
(b) If J𝜀 (𝑞)K(𝛼, 𝛽) = ⊤, then J𝜀′ (𝑞)K(𝛼, 𝛽) = ⊤.

3
Using −̂ for semantic difference of SPPs, and

∑̂
for sum of SPPs
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Next we show that hypothesis automata are correct for certain examples in the table.

Lemma 6.10. Let 𝑃 be a consistent partial observation table for target language L ⊆ GS andM =

hyp
SNKA
(𝑃) = (𝑆, 𝑠0, 𝛿, 𝜀). Let 𝑢 ∈ GS. If for every “breaking point” of 𝑢 =𝑤 · 𝑒 there is a packet table

(𝑆𝛼 , 𝐸𝛼 ,𝑇𝛼 ) such that𝑤 ∈ 𝑆𝛼 and 𝑒 ∈ 𝐸𝛼 , then we haveM(𝜂 (row𝛼 (𝑤), 𝛼 ·𝑒) = ⊤ ⇐⇒ 𝑇𝛼 (𝑤, 𝑒) = ⊤.

Corollary 6.11. After receiving a counterexample 𝑐 , any subsequent hypothesisM = (𝑆, 𝑠0, 𝛿, 𝜀) is
correct with respect to the target L on 𝑐 .

Theorem 6.12. For a regular language L, NKL★ (in Figure 6c) terminates with an SNKA for L.

Query complexity. It is possible to model NetKAT using DFAs, where each packet is a character.

Using this representation, the standard L★ algorithm would learn a model using polynomial many

queries in the size of this DFA. However, this representation of aNetKAT program is in general much

larger than the SNKA learned by the algorithm in Section 6. Our formal development establishes

termination of the SNKA learner, but we leave a more precise analysis to future work. It is important

to note that the two algorithms cannot be directly compared because the assumption of equivalence

oracle is different for the two models. As the symbolic representations used in SPPs and SNKAs

are designed to be compact in the common case, establishing complexity is likely to be more

complicated than for L★. We note, however, that the PNKA learner (Section 4) inherits polynomial

query complexity in the size of the PNKA by essentially the same arguments applicable to L★.

6.8 Networking Example
We now return to the example network that we encoded in NetKAT in Section 2.1. As a reminder,

the full target expression is:

sw=1 · pt=1 · ((pt=1 · pt�2 + pt=2 · pt�1)·
(pt=1 + pt=3 + pt=2 · (sw=1 · sw�2 + sw=2 · sw�1)) · dup)★ · sw=2 · pt=1

Our algorithm succeeds in learning a small automaton for this expression after 6 conjectures and

31 membership queries. For readability, we omit membership queries and observation tables. The

SPP labels of transitions are shown using equivalent dup-free expressions.

The learner starts by conjecturing the “drop-everything” automaton, on the right in Figure 8.

The teacher responds with a positive example (valid trace):

[{sw ↦→ 1, pt ↦→ 1}; {sw ↦→ 2, pt ↦→ 2}; {sw ↦→ 2, pt ↦→ 1}; {sw ↦→ 2, pt ↦→ 1}]
And then the learner conjectures the automaton in the middle in Figure 8.

𝑞0

⊥

𝑞0

⊥

𝑞1

⊤

sw�2 · pt�2

pt�1
𝑞0

⊥

𝑞1

pt≠2

sw�2 · pt�2

pt�1

Fig. 8. The first three conjectures.

The teacher then provides a negative example (an invalid trace):

[{sw ↦→ 1, pt ↦→ 1}; {sw ↦→ 2, pt ↦→ 2}; {sw ↦→ 2, pt ↦→ 2}]
and the learner conjectures the automaton on the right in Figure 8. The process continues with the

teacher giving another negative example:

[{sw ↦→ 1, pt ↦→ 1}; {sw ↦→ 2, pt ↦→ 2}; {sw ↦→ 2, pt ↦→ 1}; {sw ↦→ 2, pt ↦→ 1}; {sw ↦→ 2, pt ↦→ 1}]
and the learner conjecturing the automaton on the left in Figure 9. The teacher gives yet another

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 192. Publication date: June 2025.



192:20 Mark Moeller, Tiago Ferreira, Thomas Lu, Nate Foster, and Alexandra Silva

𝑞0

⊥

𝑞1

pt≠2

sw�2 · pt�2

pt=2 · pt�1 𝑞0

⊥

𝑞1

pt≠2

sw=1 · sw�2 · pt�2

pt=2 · pt�1

Fig. 9. Two further conjectures.

negative example— [{sw ↦→ 0, pt ↦→ 0}; {sw ↦→ 2, pt ↦→ 2}; {sw ↦→ 2, pt ↦→ 1}; {sw ↦→ 2, pt ↦→
1}]— followed by the learner conjecturing the automaton on the right in Figure 9.

Finally, the teacher gives the negative example:

[{sw ↦→ 1, pt ↦→ 0}; {sw ↦→ 2, pt ↦→ 2}; {sw ↦→ 2, pt ↦→ 1}; {sw ↦→ 2, pt ↦→ 1}]
And the learner conjectures:

𝑞0

⊥

𝑞1

pt≠2

sw=1 · sw�2 · pt=1 · pt�2

pt=2 · pt�1

Fig. 10. The sixth (and last) conjecture.

This automaton is correct and the learning process terminates successfully! Though this is just

a toy example, meant to illustrate the steps of the algorithm, it is worth noting that the larger

networks that we deal with in the next section follow a similar structure.

7 Implementation and Evaluation
To evaluate our techniques, we have prototyped our algorithms for learning SPPs (Figure 4) and

SNKAs (Section 6) in OCaml. Although our implementation has not yet been tuned to achieve

scalable performance, it is still useful for illustrating the benefits of our approach. We have used it

to experiment with learning models of real-world networks drawn from a standard benchmark.

7.1 Evaluation
To evaluate our approach we sought to answer two research questions:

- How well does the SPP learner scale with topology size for network transfer functions?

- How does the SNKA learner scale with topology size for whole-trace network behavior?

Topology Zoo Policies. To explore these questions, we built a set of learning problem instances

using the Internet Topology Zoo [21], a dataset for benchmarking network verification tools [16, 27].

For each topology, we have a simple shortest-path routing policy encoded as in Section 2.1.

SPP Learning. To evaluate the SPP learner, we set each network’s “transfer function” (𝑟 · 𝑡 , see
Section 2.1) as the target SPP and ran our SPP learner (that is, membership queries are on pairs

of packets representing single-step transformations in the network). The results are shown in

Figure 11a in log-log scales. The learner recovered the correct SPP for 190 out of 261 topologies

before reaching a 30 minutes timeout, suggesting its feasibility for learning policies of modest size.

SNKA Learning. To evaluate the SNKA learner, we instantiated the teacher with a full network

behavior expression, 𝑝𝑖 · (𝑟 · 𝑡 · dup)★ · 𝑝 𝑓 . For our input and output predicates, we choose:

𝑝𝑖 ≜
∑

𝑖 sw=𝑖 · (∑𝑗 dst= 𝑗), and 𝑝 𝑓 ≜
∑

𝑖 sw=𝑖 · dst=𝑖 . This says that we are interested in initial

packets starting at any origin with any destination, and the final packets which have reached their

destination (i.e., membership queries are full-trace behaviors of the policy). The timing results are

shown in Figure 11b. The SNKA learner succeeded on learning 190 of the 261 topologies. A plot of
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Fig. 11. Benchmark results for Topology Zoo dataset. Examples that exceeded 30 minutes are depicted with

an “x” in the timing plot; the queries plot includes only examples that completed within the time limit. To

keep the plot legible, we omit the largest topology, KDL, as it is an outlier.

the number of membership queries and equivalence versus target size is shown in Figure 11c. The

linear shape does not mean linear behavior because the axes are log-log.

Remark 3. The largest topology solved by the SNKA learner, Uunet, has 48 nodes, with 14 port numbers.

Considering the fields sw, dst, and pt used in the problem, we have |Pk| = 48 · 48 · 14 = 32256. Because

of the carry-on packet semantics, this means that any approach based on learning a DFA would need

to identify many thousands of different states, even if the transitions are treated symbolically, since

only carry-on packets that will be dropped can be combined. Instead, the SNKA learner here identifies

an automaton with only 2 states (excluding a drop state), and even though the transition SPPs are

complex, it does so after only 15,932 membership queries, and 2775 equivalence queries.

8 Practical Concerns
In this section we sketch additional tasks that would be needed to apply our techniques in a practical

setting where the oracle is a closed-box network or network component.

8.1 Membership queries
We assume a membership oracle of type GS→ 2 because it allows us to apply the core of MAT

style learning to our domain. One might observe, however, that a closed-box network might more

naturally be modeled by a type like Pk→ GS (i.e., given input packets, traces are produced), and a

real system may have nondeterministic behavior. To run our algorithm on a closed-box system,

one would need to implement this translation between input packets and input traces. This is not a

big issue: we can approximate the GS→ 2 oracle using a “real” oracle by sending the first packet

of our desired query trace (perhaps multiple times) and then checking whether the query trace is

produced by the system in any of the trials (caching the results for later queries).

8.2 Equivalence queries
The assumption of an equivalence oracle in work based on Angluin’s L★ algorithm, including ours, is

indeed a strong assumption. However, in practice, it often suffices to approximate equivalence. There

is a large body of prior work (e.g., CacheQuery from PLDI ’20 [31]), showing that approximation is

effective, so the assumption of an equivalence oracle is less of a practical hurdle than it might seem.

In many systems, equivalence queries are approximated using membership queries. In a nutshell,

the idea is to first generate a large set of traces (e.g., all traces up to a given length, or a random

sample of such traces) and then execute them on the conjectured model and the system. If no

discrepancies are found, then the equivalence query is deemed to be successful. On the other
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hand, if a discrepancy is found, then the equivalence query is deemed to fail, and the trace that

triggered the discrepancy is returned as a counter-example. The Random Wp-Method [17] and

domain-specific approaches [23] offer reasonable approximation guarantees.

9 Related Work
This paper is the first to address symbolic learning of NetKAT automata, however, a number of

similar problems have been the topic of extensive study.

Learning for GKAT. Zetzsche et al. [33] adapt Angluin’s L★ to the setting of Guarded Kleene

Algebra with Tests. Their work bears some similarity to ours in that they also establish a Myhill-

Nerode Theorem for GKAT en route to the full presentation of their algorithm. Unfortunately,

we cannot apply their results beyond inspiration because of the differences between GKAT and

NetKAT: GKAT supports only a “guarded” choice operator, which is deterministic, while NetKAT

supports the full nondeterministic choice operation of KAT. Further, NetKAT’s carry-on packet

semantics is the source of the challenges that we solve in our paper, issues that have no analog in

GKAT. The incompatibility of NetKAT and GKAT is explored in Wasserstein’s Master’s thesis [32].

Learning OBDDs. Angluin-style learning of Ordered Binary Decision Diagrams (OBDDs) [18]

and of automata with decision diagram transitions [24] have been explored. BDDs also appear

in the use of L★ to learn Java interface specifications [2] . The structure we use, Symbolic Packet

Programs, are reminiscent of decision diagrams, yet have crucial differences which are essential to

encode NetKAT policies as discussed in [27], which require the design of a new learning algorithm.

Learning Networking Protocols. Fiterău-Broştean et al. [13] successfully applied automata

learning to learn the state machine of fragments of the TCP protocol, and identified bugs in a

widely used TCP implementation. This work was further extended to learning sliding window

behavior [12], learning SSH implementations [15], and DTLS implementations [14]. Ferreira et al.

[10] introduced the Prognosis tool to apply automata learning to the QUIC protocol, a promising

new network protocol aiming to fully replace TCP, TLS/SSL, and HTTP for the modern web.

Prognosis was used to identify issues with both the QUIC RFC itself and several implementations.

These approaches are prime examples of using automata learning to identify bugs in networking,

but they have mostly explored DFAs, which have the drawbacks mentioned above. Our paper brings

NetKAT automata as a more expressive learning target to the learning toolkit for networking.

10 Conclusion
In this paper we presented novel techniques for active learning of NetKAT models. We developed

the theory of NetKAT with a characterization of canonical automata (akin to the results of Myhill-

Nerode for classical automata) and then used this notion to develop a learning algorithm. We

designed two symbolic learning algorithms, one for the dup-free fragment of NetKAT (SPP learner)

and one for the general case of symbolic NetKAT automata (SNKA learner). We implemented these

algorithms in an OCaml prototype and performed an evaluation using existing benchmarks. Our

evaluation shows that both the SPP and the SNKA learners scale with topology size.

As a natural next step, we would like to apply our algorithm to practical scenarios, including

inferring the model of a device for which no configuration or program is known and analyze poten-

tial misconfigurations or malicious behavior. We would also like to explore further improvements

to the algorithm via symbolic packet tables. Currently, if multiple packets are observed to behave

equivalently, we still treat their packet tables independently. This leads to repetition in queries,

and a higher memory footprint than potentially needed. We would also like to investigate efficient

heuristics for implementations of the state grouping function 𝜂. Currently the properties of this

function focus on folding the state space, however transition SPP minimality would be as important

for the scalability of NetKAT procedures that use the models.
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